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Introduction 
The study of the basic polyhedra is both a study in the properties of the space we live in as well 
as a source for basic design. Unfortunately, the relationships among the Platonic polyhedra (as 
well as some other basic polyhedra) are not taught as “basic knowledge” in the grade schools, 
nor in the Colleges and Universities. I will present an introduction to the basic polyhedra, 
showing how they are related to each other.  

A new 120 triangular faced polyhedron will be introduced. It will be shown that this 120 
Polyhedron provides a unifying vertex coordination for all of the polyhedra to be introduced.  

The "Jitterbug", a dynamic polyhedron, will be demonstrated. It will be shown that the Jitterbug 
motion provides a dynamic means for defining these polyhedra and is, therefore, of fundamental 
importance to the dynamics of space itself.  

The Golden ratio will be seen to occur throughout the polyhedra's relationships. This is both a 
fascinating "coincidence" of space as well as a visually pleasing source for basic design work.  

 

 

Topics 

• Review: 5 Platonic (Regular) Polyhedra  
• Review: Terminology and equations  
• How the polyhedra are related one to another  
• Rotating cubes  
• The 120 Polyhedron  
• The "Jitterbug" motion  
• The Jitterbug motion defines the polyhedra  
• Interesting Designs  
• Appendix I: Vertex Coordinates  
• Appendix II: Basic Data For The 120 Polyhedron  
• Appendix III: A Comment on the Golden Ratio  
• Appendix IV: Planes and Common Angles Defined by the 120 Polyhedron 
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Review: 5 Platonic (Regular) Polyhedra 
 

 
Tetrahedron Octahedron 

Cube 

 
Dodecahedron Icosahedron 

 

Review: Terminology And Equations 

n-Fold Symmetric Rotation Axes 

Three kinds of symmetry rotation axes (see above illustrations for examples):  

1. Vertex to Vertex,  
2. Mid-edge to Mid-edge,  
3. Face to Face.  
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If a rotation of a polyhedron about a particular axis by an angular amount  

0° < d < 360°  
leaves the polyhedron in its initial position, then the axis is an n-fold symmetric rotation axis, 
where  

n = 360° / d  
and the polyhedron is said to be n-fold symmetric.  

For example, the Tetrahedron's mid-edge to mid-edge axes: A rotation by 180° puts the 
Tetrahedron in the same positions as no rotation at all. Therefore, for this polyhedron and for 
this rotation axis, the Tetrahedron is 360° / 180° = 2-fold symmetric.  

 

Allspace Filling 

Neither the Tetrahedron nor the Octahedron can fill all of space, without intersection, such that  

1. only Tetrahedra appear in space  
2. only Octahedra appear in space.  

The Tetrahedron and the Octahedron can combine face to face to fill all space with Tetrahedra 
and Octahedra.  

The Cube can fill all space by itself.  

Neither the Dodecahedron nor the Icosahedron can fill all space, singly or in combination.  
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Dual Polyhedra 

To create the "dual" of a polyhedron, replace faces with vertices, and vertices with faces. (The 
following illustrations show the polyhedra scaled so that the dual polyhedra's edges intersect 
each other.)  

  
Duals: Cube and Octahedron Duals: Dodecahedron and Icosahedron

 
Self-Duals: Two Intersecting Tetrahedra

When scaled as shown, the Cube and Octahedron dual pair define the Rhombic Dodecahedron 
(shown in green). The Rhombic Dodecahedron fills all space.  

 
Cube and Octahedron Duals 

Define Rhombic Dodecahedron
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The Icosahedron and the (regular) Dodecahedron dual pair define the rhombic Triacontahedron 
(shown in green).  

 
Icosahedron and Dodecahedron Duals

Define Rhombic Triacontahedron  

The 2 intersecting Tetrahedra self dual pair define the Cube (shown in green).  

Tetrahedra Self Duals  
Define Cube  

 

Basic Equations 

• Euler's Equation: V + F = E + 2  

Name Vertices Faces Edges V + F E + 2 
Tetrahedron 4 4 6 8 8 

Cube 8 6 12 14 14 
Octahedron 6 8 12 14 14 

Rhombic Dodecahedron 14 12 24 26 26 
Icosahedron 12 20 30 32 32 

Dodecahedron 20 12 30 32 32 
Rhombic Triacontahedron 32 30 60 62 62 
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• Sum of Surface Angles = V * 360° - 720°  

Name Sum of Angles
1 Face Faces Total Sum of

Surface Angles Vertices V*360° V*360°-720°

Tetrahedron 60°*3=180° 4 720° 4 1440° 720° 
Cube 90°*4=360° 6 2160° 8 2880° 2160° 

Octahedron 60°*3=180° 8 1440° 6 2160° 1440° 
Rhombic Dodecahedron 360° 12 4320° 14 5040° 4320° 

Icosahedron 60°*3=180° 20 3600° 12 4320° 3600° 
Dodecahedron 108°*5=540° 12 6480° 20 7200° 6480° 

Rhombic Triacontahedron 360° 30 10800° 32 11520° 10800° 

• Volume equations  

Name Volume Equation 
Tetrahedron 1 (Edge Length)^3 

Cube 3 (Face Diagonal)^3 
Octahedron 4 (Edge Length)^3 

Rhombic Dodecahedron 6 (Long Face Diagonal)^3 
Icosahedron 5sqrt(2)p^2(E.L.)^3 

Dodecahedron (24+42p)(E.L.^3)/sqrt(2) 
Rhombic Triacontahedron 15sqrt(2)(E.L.)^3 

 

How The Polyhedra Are Related One To Another 

Intersecting Tetrahedra In Cube 

We have just seen how two intersection Tetrahedra define a cube.  

 
Two Tetrahedra Define a Cube
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Octahedron In Intersecting Tetrahedra 

The intersection of 2 Tetrahedra defines an Octahedron.  

Intersecting Tetrahedra 
Define Octahedron  

 

Intersecting Cube And Octahedron Define VE 

Intersecting Cube and Octahedron define a Cuboctahedron. Fuller calls the Cuboctahedron the 
"Vector Equilibrium" because all radial vectors from the center of volume out to a vertex is the 
same length as the edge vectors. This polyhedron is also called the "VE" for short.  

Intersecting Cube and  
Octahedron Define VE  
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Tetrahedra In Dodecahedron 

It is possible to define 10 Tetrahedra within the Dodecahedron utilizing only the vertices of the 
Dodecahedron.  

 
10 Tetrahedra In The Dodecahedron

Each of the Dodecahedron's vertices is shared with 2 Tetrahedra. We can eliminate this 
redundancy by removing 5 Tetrahedra.  

 
5 Tetrahedra In The Dodecahedron

This suggests a spiral vortex motion in each of the Dodecahedron's faces.  

 
5 Tetrahedra In The Dodecahedron

Suggests Spiral Motion  
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Cubes In Dodecahedron 

It is possible to position 5 Cubes within the Dodecahedron.  

 
5 Cubes In The Dodecahedron

 

 

Rotating Cubes 
The model of 5 Cubes in the Dodecahedron suggested to me that the cubes might be positioned 
within the Dodecahedron by rotations from a single cube position. This is indeed the case.  

Consider a single cube. It has 4 Vertex to Vertex rotation axes.  

 
4 Vertex to Vertex Rotation Axes

If we assign a Cube to each of these axes, we have a total of 5 Cubes (original 1 plus 4). We 
then rotate the 4 Cubes about these 4 axes.  
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Four Rotating Cubes,  

One Stationary  5 Cubes in Dodecahedron  

 

 

The 120 Polyhedron 
We will now put all of the polyhedra together into a single polyhedron. The resulting 
polyhedron will have 120 triangular faces. It is called the 120 Polyhedron.  

This polyhedron was originally described to me by Lynnclaire Dennis. For more information on 
Ms Dennis and her work, see the Pattern web site at http://www.pattern.org/.  

Start with the Dodecahedron.  

 
Dodecahedron  
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Add in all 10 Tetrahedra.  

 
Dodecahedron, Tetrahedra  

Add the 5 Cubes.  

 
Dodecahedron, Tetrahedra, Cubes  

 

Add the duals to each of the 5 Cubes; 5 Octahedra.  

 
Dodecahedron, Tetrahedra, Cubes, Octahedra  
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Recall that each Cube/Octahedron pair defines a rhombic Dodecahedron.  

 
Dodecahedron, Tetrahedra, Cubes, Octahedra,  

rhombic Dodecahedra  

 

Add the dual to the (regular) Dodecahedron; the Icosahedron.  

 
Dodecahedron, Tetrahedra, Cubes, Octahedra, 

 rhombic Dodecahedra, Icosahedron  

Recall that the Icosahedron/Dodecahedron pair defines the rhombic Triacontahedron.  

 
Dodecahedron, Tetrahedra, Cubes, Octahedra,  

rhombic Dodecahedra, Icosahedron,  
rhombic Triacontahedron  
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Connect all the outer vertices together. This defines the 120 Polyhedron.  

  
Dodecahedron, Tetrahedra, Cubes, Octahedra, rhombic Dodecahedra, 

Icosahedron, rhombic Triacontahedron, 120 Polyhedron  

 
120 Polyhedron  

(Note that there are other polyhedra with 120 triangular faces. They will not be discussed here.)  

 

The "Jitterbug" And Its Motion 
Recall the Cuboctahedron, which Fuller calls the "Vector Equilibrium" (VE).  

The VE  
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With a Cuboctahedron (VE) constructed out of sticks and rubber vertices, Fuller often 
demonstrated what he called the "Jitterbug" motion. The Jitterbug shows how the VE can fold 
up into an Octahedron as well as how an Octahedron can expand in the VE.  

 
VE position  Jitterbug in motion Octahedron position  

 

The Jitterbug has 8 triangular faces. As these 8 faces rotate, they also move radially inward or 
outward from the center of volume along its 4 rotation axes.  

 
Motion along 4 rotation axes

 

These are the same 4 rotation axes that we used to rotate the 4 cubes.  

Jitterbug rotation axes
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Jitterbug Motion Defines The Basic Polyhedra 
Fuller pointed out that between the VE and the Octahedron positions, the Jitterbug will pass 
through an Icosahedron position.  

Jitterbug defines  
the Icosahedron  

If we allow the 8 rotating triangles to interpenetrate each other, then the Jitterbug can rotate and 
contract into two intersecting tetrahedra to define a cube.  

  
Jitterbug in Octahedron position Jitterbug in motion Jitterbug in Cube position

Further rotation and contraction results in the definition of another Icosahedron.  

 
Jitterbug in  

Cube position  
Jitterbug defines  
the Icosahedron 

Jitterbug in  
Icosahedron position 

When the 120 Polyhedron is considered with all of its defining, internal polyhedra, many 
Jitterbugs can easily be identified. These Jitterbugs are not all in the same open position, nor of 
the same scale. Here is an illustration looking into the array of polyhedra through a regular 
Dodecahedron vertex. (The outer edges of the 120 Polyhedron are not shown.)  
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Looking into a  
Dodecahedron vertex

In the next sequence of illustrations, I display various Jitterbugs by changing the associated 
polyhedron into a solid appearance. All of these Jitterbugs have the same face centered rotation 
axis passing through the regular Dodecahedron's vertex.  

A Jitterbug in the 
Icosahedron position

A Jitterbug defined by 
Cube edges  

 
A Jitterbug in the  

Octahedron position 

A Jitterbug in the  
Tetrahedron position

A Jitterbug in the 
VE position  

It is difficult to see the Jitterbug defined by the Cube's edges in the above illustration, so here is 
a different perspective. The Dodecahedron is shown with the 5 Cubes. Some of the edges of the 
Cubes are outlined in black. Filling in the triangular faces in black reveals the Jitterbug.  
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A Jitterbug defined by the Cube edges  

Notice the variation in the triangular face sizes and orientations. These variations show that 
there are many different Jitterbugs operating within the 120 Polyhedron.  

The Octahedron is one position which the Jitterbug passes through. There are 5 Octahedra in the 
120 Polyhedron. Here is a movie showing the dynamics of 5 Jitterbugs. Note that the Jitterbugs 
define both the Icosahedron and the Dodecahedron.  

 
Five Jitterbugs passing  

through and defining an  
Icosahedron and Dodecahedron
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Interesting Designs 
Here are some additional combinations of polyhedra which I find particularly interesting.  

 
Ten Tetrahedra  Five Octahedra  Five Rhombic Dodecahedra 

 

   

Five Octahedra  5 Octahedra,  
Icosahedron, Dodecahedron

5 Octahedra,  
Icosahedron, Dodecahedron

Surface waves over  
the 120 Polyhedron  
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Appendix I: Vertex Coordinates 
In order to calculate the properties of the 120 Polyhedron, it is helpful to first calculate the 
coordinates to its vertices. But what orientation and scale of the 120 Polyhedron should be 
used? Is there a preferred orientation and scale which will make calculations easier or which 
will highlight some important features of the 120 Polyhedron?  

In a note published on "synergetics-l@teleport.com", Gerald de Jong showed that the regular 
Dodecahedron could be assigned simple coordinates expressed in terms of the Golden ratio. The 
Golden ratio is often represented by the Greek letter phi. However, I will use the letter "p" in 
this text. The Golden ratio is  

p = (1 + sqrt(5)) / 2  

which is approximately p = 1.618033989.  

Gerald showed that the Dodecahedron's 20 vertices could all be assign numbers from the set  

{0, -p, p, -p^2, p^2, -p^3, p^3}.  

This is a remarkable set of numbers. For example, it can easily be shown that  

p + p^2 = p^3  

In general, it can be shown that (for n an integer)  

p^n + p^(n+1) = p^(n+2)  

Additionally, using these numbers for the coordinates of the regular Dodecahedron highlights 
the Golden ratio aspects of the polyhedron.  

Since the regular Dodecahedron's vertices are the same as 20 of the 120 Polyhedron's vertices, I 
will use Gerald's 20 coordinates to fix the orientation and scale of the 120 Polyhedron. I will 
then calculate and fill in the remaining 62-20=42 coordinates. 
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120 Polyhedron’s Vertex Coordinates 

Vertex Type X Y Z 
1 A 0 0 2p^2 
2 B p^2 0 p^3 
3 A p p^2 p^3 
4 C 0 p p^3 
5 A -p p^2 p^3 
6 B -p^2 0 p^3 
7 A -p -p^2 p^3 
8 C 0 -p p^3 
9 A p -p^2 p^3 
10 A p^3 p p^2 
11 C p^2 p^2 p^2 
12 B 0 p^3 p^2 
13 C -p^2 p^2 p^2 
14 A -p^3 p p^2 
15 A -p^3 -p p^2 
16 C -p^2 -p^2 p^2 
17 B 0 -p^3 p^2 
18 C p^2 -p^2 p^2 
19 A p^3 -p p^2 
20 C p^3 0 p 
21 A p^2 p^3 p 
22 A -p^2 p^3 p 
23 C -p^3 0 p 
24 A -p^2 -p^3 p 
25 A p^2 -p^3 p  

Vertex Type X Y Z
26 A 2p^2 0 0 
27 B p^3 p^2 0 
28 C p p^3 0 
29 A 0 2p^2 0 
30 C -p p^3 0 
31 B -p^3 p^2 0 
32 A -2p^2 0 0 
33 B -p^3 -p^2 0 
34 C -p -p^3 0 
35 A 0 -2p^2 0 
36 C p -p^3 0 
37 B p^3 -p^2 0  

VertexType X Y Z 
38 C p^3 0 -p 
39 A p^2 p^3 -p 
40 A -p^2 p^3 -p 
41 C -p^3 0 -p 
42 A -p^2 -p^3 -p 
43 A p^2 -p^3 -p 
44 A p^3 p -p^2
45 C p^2 p^2 -p^2
46 B 0 p^3 -p^2
47 C -p^2 p^2 -p^2
48 A -p^3 p -p^2
49 A -p^3 -p -p^2
50 C -p^2 -p^2 -p^2
51 B 0 -p^3 -p^2
52 C p^2 -p^2 -p^2
53 A p^3 -p -p^2
54 B p^2 0 -p^3
55 A p p^2 -p^3
56 C 0 p -p^3
57 A -p p^2 -p^3
58 B -p^2 0 -p^3
59 A -p -p^2 -p^3
60 C 0 -p -p^3
61 A p -p^2 -p^3
62 A 0 0 -2p^2 

 

Remember that the 10 Tetrahedra, 5 Cubes, 5 Octahedra, 5 rhombic Dodecahedra, the regular 
Dodecahedron, Icosahedron and the rhombic Triacontahedron all share their vertices with the 
120 Polyhedron. This means that all their vertex coordinates are a subset of the coordinates 
given above.  

The combinations of 0, p, p^2, p^3 is very interesting.  
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Appendix II: Basic Data For The 120 Polyhedron 
Using the above coordinates, the basic data for the 120 Polyhedron can easily be calculated.  

The 120 Polyhedron has 3 types of vertices. Each type of vertex is defined by the other 
polyhedra that share the vertex.  

Vertex types  

 

Vertex 
Type Shared With The Vertices Of 

A Octahedra, Rhombic Dodecahedra 
B Icosahedron, Rhombic Triacontahedron 

C Regular Dodecahedron, Rhombic Dodecahedra, Cubes, 
Tetrahedra, Rhombic Triacontahedron 

 

The 3 different vertex types of the 120 Polyhedron are at different distances from the 
Polyhedron's center of volume.  

Vertex
Label Radius Approx. 

A 2p^2 5.236067977
B sqrt(2+p)p^2 4.97979657
C sqrt(3)p^2 4.534567884
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The edge lengths of the triangular face ABC are  

Edge Length Approx. 
AB sqrt(3)p 2.802517077
AC sqrt(2+p) 1.902113033
BC sqrt(2+p)p 3.077683537

 

The face angles are calculated to be  

Angle 
Label Angle Approx. 

BAC arccos(1/(sqrt(6+3p)p)) 79.18768304°
ABC arccos((p^2)/sqrt(6+3p)) 37.37736814°
ACB arccos(p/(2+p)) 63.43494882°

 

The triangular face data is summarized in the following diagram.  

Triangle Data  
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In calculating the volumes of the polyhedra in the 120 Polyhedron, I will use, as Fuller does, the 
Tetrahedron as unit volume.  

Polyhedron Coordinate 
Distance 

Normalized
Length Volume Approx. 

Tetrahedron Edge 
2sqrt(2)p^2 1 1 1.0 

Cube Face Diagonal 
2sqrt(2)p^2 1 3 3.0 

Octahedron Edge 
2sqrt(2)p^2 1 4 4.0 

Rhombic 
Dodecahedron 

Long Face Diagonal
2sqrt(2)p^2 1 6 6.0 

Regular 
Dodecahedron 

Edge 
2p 1/(sqrt(2)p) (3/2)(2+p) 5.427050983

Icosahedron Edge 
2p^2 1/sqrt(2) (5/2)p^2 6.545084972

Rhombic 
Triacontahedron 

Long Face Diagonal
2p^2 1/sqrt(2) 15/2 7.5 

120 Polyhedron Long Face Diagonal
of R. Triaconta. 2p^2 1/sqrt(2) 15/p 9.270509831

 

It is interesting to note that in the 120 Polyhedron, the Icosahedron edge length is equal to the 
Cube edge length. The Icosahedron edge length is also equal to the distance from the center of 
volume to an Octahedron vertex.  
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Appendix III: A Comment on the Golden Ratio 
The Golden Ratio occurs quite frequently in biology. Many growth patterns exhibit the 
Fibonacci numbers (1, 1, 2, 3, 5, 8, 13, 21, etc.) in which the next number is the sum of the 
previous 2 numbers. The Fibonacci sequence is known to be connected with the Golden Ratio.  

Although it is often pointed out that the Golden Ratio is the limit of successive Fibonacci 
numbers  

Lim(n->infinity) (f(n+1)/f(n)) = p  

this is also true for any sequence f(n) defined by  

f(n+1) = f(n) + f(n-1)  

where f(n) is an integer for all n. The Fibonacci sequence (1, 1, 2, 3, 5, 8, 13, etc.) is just one 
such sequence. Any sequence as defined above will work.  

The important point is that the Golden Ratio is not exclusively associated with the Fibonacci 
sequence, as many writings might lead you to believe.  

For example, try f(1)=-23, f(2)=15, then f(3)=-8, f(4)=7, f(5)=-1, f(6)=6, f(7)=5, f(8)=11, 
f(9)=16, f(10)=27, etc. Then the limit as n approaches infinity of f(n+1)/f(n) will equal the 
Golden Ratio. (f(10)/f(9)=27/16=1.6875 which already starts to show the 1.6... of the Golden 
Ratio.)  

So the Golden Ratio is connected with how the series is constructed and not a particular 
example of that construction (i.e. the Fibonacci sequence.) The Fibonacci sequence happens to 
be the most well known example of the construction rule  

f(n+1) = f(n) + f(n-1)  
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Appendix IV: Planes and Common Angles Defined by the 120 
Polyhedron 

Returning to consider the coordinates of the 120 Polyhedron's vertices as listed above, it is 
obvious, from the z-coordinate, that the 62 vertices divide themselves into 9 groups. Each group 
defines a plane passing through the polyhedron. The spacing between the planes is shown in the 
next illustration.  

 
Vertex layers in the 120 Polyhedron  

 

The central angles of the intersection of these planes with a circumsphere are given in the next 
table The results illustrate interesting relations between the angles and the Golden Ratio p. The 
radius of the sphere is 2p^2 = 2 + 2p.  

cos(18°) sqrt(2+p)/2 sin(72°)
cos(30°) sqrt(3)/2 sin(60°)
cos(36°) p/2 sin(54°)
cos(45°) 1/sqrt(2) sin(45°)
cos(54°) sqrt(3 - p)/2 sin(36°)
cos(60°) 1/2 sin(30°)
cos(72°) 1/(2p) sin(18°)
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Central Angles of Planes  

 

 
Additional Angles  

 

However, as pointed out above, not all of the 120 Polyhedron's vertices are at the same radial 
distance from the center of volume. This means that not all of the vertices lie on the 
circumsphere. I am only illustrating the planes defined by these vertices and not the vertices 
themselves.  
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