Tetrahedron

Figure 1 Tetrahedron with vertex labels.

Figure 2 Tetrahedron Altitude.

 $Figure \ 3 \ Tetrahedron's \ Face \ Altitude.$

Figure 4 Distance from a Center Of Face point to a Vertex.

Figure 5 Distance from a Center Of Face point to a mid-Edge point.

Figure 6 Distance from the Center Of Volume to a Vertex.

Figure 7 Distance from the Center Of Volume to a mid-Edge point.

Figure 8 Distance from the Center Of Volume to a Face center point.

Topology:

Vertices = 4

Edges = 6

Faces = 4 equilateral triangles

Lengths:

 $EL \equiv Edge Length$

Face Altitude =
$$\frac{\sqrt{3}}{2}$$
 EL \cong 0.866 025 404 EL

Tetrahedron Altitude =
$$\frac{\sqrt{2}}{\sqrt{3}}$$
 EL \cong 0.816 496 581 EL

DFV =
$$\frac{1}{\sqrt{3}}$$
 EL $\approx 0.577 350 269$ EL

DFE =
$$\frac{1}{2\sqrt{3}}$$
 EL \approx 0.288 675 135 EL

DVV =
$$\frac{\sqrt{3}}{2\sqrt{2}}$$
 EL \approx 0.612 372 436 EL

DVE =
$$\frac{1}{2\sqrt{2}}$$
 EL ≈ 0.353553591 EL

DVF =
$$\frac{1}{2\sqrt{6}}$$
 EL $\approx 0.204 \ 124 \ 245 \ EL$

Areas:

Each of the 4 equilateral triangular face have the same area.

Area of one triangular face =
$$\frac{\sqrt{3}}{4}$$
 EL² $\approx 0.433\ 012\ 702\ EL^2$

Total face area =
$$\sqrt{3}$$
 EL² \cong 1.732 050 808 EL²

Volume:

Cubic measured volume equation = $\frac{1}{2\sqrt{6}}$ EL³ \cong 0.117 851 130 EL³

Synergetics' Tetravolume equation = EL^3

Angles:

All face angles are 60°.

Sum of face angles = 720° .

Central Angles:

Figure 9 Central angle.

All central angles are = 2
$$\arccos\left(\frac{1}{\sqrt{3}}\right) \approx 109.471\ 220\ 634^{\circ}$$

Dihedral Angles:

Figure 10 Dihedral angle.

All dihedral angles are =
$$\arccos\left(\frac{1}{3}\right) \approx 70.528779366^{\circ}$$

Additional Angle Information:

Note that

Central Angle + Dihedral Angle = 180°

which is the case for pairs of dual polyhedra. The Tetrahedron is self dual (is its own dual).

The angle

V4.V1.FaceCenter(V1.V2.V3) =
$$\arccos\left(\frac{1}{\sqrt{3}}\right) \approx 54.735 \ 610 \ 317^{\circ}$$
.

Figure 11 Edge onto Face angle.

When a sphere is placed around a Tetrahedron (the circumsphere) such that one of the Tetrahedron's vertices is at the "south pole", then the other 3 vertices will be on a circle which is at a latitude of

$$\theta = \arccos\left(\frac{2\sqrt{2}}{3}\right) \cong 19.471\ 220\ 634^{\circ}$$

above the equator of the sphere.

When the Tetrahedron is spun about an axis through one of its vertices and through the opposite face center point, a cone is defined.

Figure 12 Tetrahedron defined 1/2 Cone angle.

The half-cone angle is

$$\theta = \arccos\left(\frac{\sqrt{2}}{\sqrt{3}}\right) \approx 35.264389683^{\circ}$$

Consider a spin axis passing through opposite mid-edge points. A cone with its apex at the center of volume and passing through the two ends of the edge used to define the edge that the spin axis passes through has a cone angle equal to the central angle.

Figure 13 Another Tetrahedron defined angle.

Half of this cone angle is another Quantum Mechanic's space quantization angle for the case $j=\frac{1}{2}$, $m_j=\frac{1}{2}$.

$$\theta = \arccos\left(\frac{1}{\sqrt{3}}\right) \approx 54.735 \ 610 \ 317^{\circ}.$$

Another cone with apex at the center of volume gives another Quantum Mechanic's space quantization angle, this time for the case $j=\frac{1}{2}$, $m_j=-\frac{1}{2}$.

Figure 14 Another Tetrahedron defined angle.

$$\theta = \arccos\left(\frac{-1}{\sqrt{3}}\right) \cong 125.264\ 389\ 7^{\circ}$$

Vertex Coordinates:

$$V1 = \left(\frac{-1}{2}, \frac{-1}{2\sqrt{3}}, \frac{-1}{2\sqrt{6}}\right) EL$$

$$\approx (-0.5, -0.288675135, -0.204124145) EL$$

$$V2 = \left(\frac{1}{2}, \frac{-1}{2\sqrt{3}}, \frac{-1}{2\sqrt{6}}\right) EL$$

$$\approx (0.5, -0.288 675 135, -0.204 124 145) EL$$

V3 =
$$\left(0.0, \frac{1}{\sqrt{3}}, \frac{-1}{2\sqrt{6}}\right)$$
 EL
 $\approx (0.0, 0.577 350 269, -0.204 124 145)$ EL

$$V4 = \left(0.0, 0.0, \frac{3}{2\sqrt{6}}\right)$$

$$\approx (0.0, 0.0, 0.612372436) \text{ EL}$$

Edge Map:

Face Maps:

$$\{\{V1, V3, V2\} \{V1, V4, V3\} \{V1, V2, V4\} \{V2, V3, V4\}\}$$

Other Orientations:

There are 10 Tetrahedra having the same 20 vertices as 20 out of 62 vertices of the "120 Polyhedron (Type III: Dennis)". The pattern of these 20 vertex coordinate numbers is rather interesting when written in terms of the Golden Mean

$$\varphi = \frac{1+\sqrt{5}}{2}$$
 . In this case, the edge lengths of the Tetrahedra are

EL =
$$2\sqrt{2} \varphi^2 \cong 7.404\,918\,348$$
 units of length.

Using the vertex labeling of the 120 Polyhedron (Type III: Dennis) the vertex coordinates are as follows.

The vertex labels are those of the 120 Polyhedron.

Orientation 1:

$$\begin{array}{lll} V4 &= (& 0\,, & \phi\,, & \phi^3) \\ &\cong (0.0,\, 1.618\,\, 033\,\, 989,\, 4.236\,\, 067\,\, 979) \\ V34 &= (& -\phi\,, -\phi^3\,, & 0\,) \\ &\cong (-1.618\,\, 033\,\, 989,\, -4.236\,\, 067\,\, 979,\, 0.0) \\ V38 &= (& \phi^3\,, & 0\,, & -\phi) \\ &\cong (4.236\,\, 067\,\, 979,\, 0,\, -1.618\,\, 033\,\, 989) \\ V47 &= (-\phi^2\,, & \phi^2\,, -\phi^2) \\ &\cong (-2.618\,\, 033\,\, 989,\, 2.618\,\, 033\,\, 989,\, -2.618\,\, 033\,\, 989) \end{array}$$

Orientation 2:

$$\begin{array}{l} V18 \ = \ (\ \phi^{\,2}, -\phi^{\,2}, \ \phi^{\,2}) \\ \ \cong \ (2.618\ 033\ 989, \ -2.618\ 033\ 989, \ 2.618\ 033\ 989) \\ V23 \ = \ (-\phi^{\,3}, \quad 0\,, \ -\phi) \\ \ \cong \ (-4.236\ 067\ 979, \ 0.0, \ -1.618\ 033\ 989) \\ V28 \ = \ (\ -\phi, \ \phi^{\,3}, \quad 0\,) \\ \ \cong \ (-1.618\ 033\ 989, \ 4.236\ 067\ 979, \ 0.0) \\ V60 \ = \ (\ 0\,, \ -\phi, -\phi^{\,3}) \\ \ \cong \ (\ 0.0, \ -1.618\ 033\ 989, \ -4.236\ 067\ 979) \\ \end{array}$$

Orientation 3:

Orientation 4:

V16 =
$$(-\varphi^2, -\varphi^2, \varphi^2)$$

 $\cong (-2.618\ 033\ 989, -2.618\ 033\ 989, 2.618\ 033\ 989)$
V20 = $(-\varphi^3, 0, \varphi)$
 $\cong (-4.236\ 067\ 979, 0.0, 1.618\ 033\ 989)$
V30 = $(-\varphi, \varphi^3, 0)$
 $\cong (-1.618\ 033\ 989, 4.236\ 067\ 979, 0.0)$
V60 = $(0, -\varphi, -\varphi^3)$
 $\cong (0.0, -1.618\ 033\ 989, -4.236\ 067\ 979)$

Orientation 5:

Orientation 6:

V13 =
$$(-\varphi^2, \varphi^2, \varphi^2)$$

 $\cong (-2.618\ 033\ 989,\ 2.618\ 033\ 989,\ 2.618\ 033\ 989)$
V20 = $(\varphi^3, \varphi^2, \varphi^2)$
 $\cong (4.236\ 067\ 979,\ 0.0,\ 1.618\ 033\ 989)$
V34 = $(-\varphi, -\varphi^3, \varphi^2)$
 $\cong (-1.618\ 033\ 989,\ -4.236\ 067\ 979,\ 0.0)$
V56 = $(\varphi^2, \varphi^2, \varphi^2)$
 $\cong (0.0,\ 1.618\ 033\ 989,\ -4.236\ 067\ 979)$

Orientation 7:

$$\begin{array}{lll} V8 &= (& 0 \text{, } -\phi \text{, } \phi \text{ }^3) \\ &\cong (0.0, -1.618\ 033\ 989,\ 4.236\ 067\ 979) \\ V30 &= (& -\phi \text{, } \phi \text{ }^3 \text{, } & 0) \\ &\cong (-1.618\ 033\ 989,\ 4.236\ 067\ 979,\ 0.0) \\ V38 &= (& \phi \text{ }^3 \text{, } & 0 \text{, } -\phi) \\ &\cong (4.236\ 067\ 979,\ 0.0,\ -1.618\ 033\ 989) \\ V50 &= (-\phi \text{ }^2 \text{, } -\phi \text{ }^2 \text{, } -\phi \text{ }^2) \\ &\cong (-2.618\ 033\ 989,\ -2.618\ 033\ 989,\ -2.618\ 033\ 989, \end{array}$$

Orientation 8:

V11 = (
$$\varphi^2$$
, φ^2 , φ^2)
 \cong (2.618 033 989, 2.618 033 989, 2.618 033 989)
V23 = ($-\varphi^3$, 0, φ)
 \cong (-4.236 067 979, 0.0, 1.618 033 989)
V36 = (φ , $-\varphi^3$, 0)
 \cong (1.618 033 989, -4.236 067 979, 0.0)
V56 = (0, φ , $-\varphi^3$)
 \cong (0.0, 1.618 033 989, -4.236 067 979)

Orientation 9:

V11 = (
$$\varphi^2$$
, φ^2 , φ^2)
 \cong (2.618 033 989, 2.618 033 989, 2.618 033 989)
V16 = ($-\varphi^2$, $-\varphi^2$, φ^2)
 \cong (-2.618 033 989, -2.618 033 989, 2.618 033 989)
V47 = ($-\varphi^2$, φ^2 , $-\varphi^2$)
 \cong (-2.618 033 989, 2.618 033 989, -2.618 033 989)
V52 = (φ^2 , $-\varphi^2$, $-\varphi^2$)
 \cong (2.618 033 989, -2.618 033 989, -2.618 033 989)

Note that by scaling by $1/\varphi^2$, Orientation 9 can be written as

$$V11 = (1, 1, 1)$$

 $V16 = (-1, -1, 1)$
 $V47 = (-1, 1, -1)$
 $V52 = (1, -1, -1)$

Orientation 10:

$$\begin{array}{l} V13 \ = \ (-\varphi^2, \ \varphi^2, \ \varphi^2) \\ \ \cong \ (-2.618\ 033\ 989,\ 2.618\ 033\ 989,\ 2.618\ 033\ 989) \\ V18 \ = \ (\ \varphi^2, -\varphi^2, \ \varphi^2) \\ \ \cong \ (2.618\ 033\ 989,\ -2.618\ 033\ 989,\ 2.618\ 033\ 989) \\ V45 \ = \ (\ \varphi^2, \ \varphi^2, -\varphi^2) \\ \ \cong \ (2.618\ 033\ 989,\ 2.618\ 033\ 989,\ -2.618\ 033\ 989) \\ V50 \ = \ (-\varphi^2, -\varphi^2, -\varphi^2) \\ \ \cong \ (-2.618\ 033\ 989,\ -2.$$

Note that by scaling by $1/\varphi^2$, Orientation 10 can be written as

$$V13 = (-1, 1, 1)$$

 $V18 = (1, -1, 1)$
 $V45 = (1, 1, -1)$
 $V50 = (-1, -1, -1)$

Unfolded Vertex Coordinates (X, Y):

$$V1 = (0.0, 0.0) EL$$

$$V2 = (1.0, 0.0) EL$$

$$V3_1 = \left(\frac{1}{2}, \frac{-\sqrt{3}}{2}\right) EL \cong (0.5, -0.866\ 025\ 4) EL$$

$$V3_2 = \left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right) EL \cong (1.5, 0.866 \ 0.25 \ 4) EL$$

V3₃ =
$$\left(\frac{-1}{2}, \frac{\sqrt{3}}{2}\right)$$
 EL \cong (-0.5, 0.866 025 4) EL

V4 =
$$\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$$
 EL \cong (0.5, 0.866 025 4) EL

Figure 15 Layout for the Tetrahedron.

Comments:

The dual of the Tetrahedron is another Tetrahedron.

The Tetrahedron does not fill all-space by itself. It can be combined with the Octahedron to from an Octet which does fill all-space.

The Tetrahedron shares its vertices with the Cube's and the regular Dodecahedron's vertices. Ten Tetrahedra can be formed using the Dodecahedron's vertices.

The 4 face planes of the Tetrahedron are shared with 4 out of 8 face planes of the Octahedron and 4 out of 20 face planes of an Icosahedron.

Cutting the Tetrahedron with a plane that is parallel to any one of the faces results in a smaller Tetrahedron.

The Tetrahedron can be divided into 24 A Quantum Modules.

Five Tetrahedra face to face leaves a little bit of an opening. The angular amount of this opening is called the unzipping angle. The value of the angle is

$$\zeta = 360^{\circ} - 5 \arccos\left(\frac{1}{3}\right) \approx 7.356\ 103\ 172^{\circ}$$

Figure 16 Unzipping angle.