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Introduction 
 

 

We develop a set of equations which describes the motion of a vertex of the Jitterbug.  

The Jitterbug starts in the “closed” Octahedron position with 8 triangle faces and 6 

vertices and “opens” into a Cuboctahedron (also called the Vector Equilibrium or VE) 

with 8 triangle faces, 6 square faces, and 12 vertices.  (See Figure #1.)   

 

The Jitterbug motion is visually complex but simple when you focus only on the motion 

of one of the 8 triangles.    The motion of a triangle is simply a radial displacement plus a 

rotation around the radial displacement vector.  Because the triangular faces do not 

change size as they move radially and rotate, the 3 vertices of a triangle are always on the 

surface of a cylinder.  (See Figure #2.)  The cylinder is axially aligned with the 

displacement vector.  That is, with a line passing through the Octahedron’s (and VE’s) 

center of volume out through the triangle’s face center point.  There are 4 axes of rotation 

(two opposite triangular faces per axis) so there are 4 fixed cylinders in which the 

triangles move. 

 

The reason the motion appears complex is because the Jitterbug is often demonstrated by 

holding the “top” and “bottom” triangle fixed while pumping the model.  This causes the 

remaining 6 triangles to move radially in and out, rotate and orbit about the “up” and 

“down” pumping axis.  By allowing all 8 triangles to move in the same way, that is, not 

fixing any of the 8 triangles, the motion is simplified. 
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Figure #1 Jitterbug Motion 
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Figure #2 Jitterbug Motion within cylinders. 
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Development of Vertex Motion Equations 
 

 

Consider the Octahedron so positioned as to have one of its triangular faces in the xy-

plane and so that its face center is at the coordinate origin.  One of the triangle’s vertices 

is on the –x-axis (minus x-axis).  

 
Figure #3 Path of a vertex 

 

Let  

EL = Edge Length of a triangle face 

r = Cylinder radius. 

Note that r = DFV = Distance from a triangle’s face center to the triangle’s vertex. 

r = 
3

1  EL  and so   EL = 3  r 

The equations for the cylinder in which the triangle face moves is given by 

 xc = r cos(ϕ) 

 yc = r sin(ϕ) 

 zc 
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During the Jitterbug motion from an Octahedron position through the VE position to the 

second Octahedron position, a triangular face will rotate from – 60° ≤ ϕ ≤ 60°.  In other 

words, it will rotate through an angular range of 120. 

 

The total distance through which the triangular face will move radially from the 

Octahedron position to the VE position can be calculated as follows: 

 h = T.A. – DVFo 

where T.A. is the Tetrahedron Altitude and DVFo is the  distance from the center of 

volume to the Octahedron’s triangle face center point. 

 h = 
3
2

 EL – 
6

1  EL 

(We have set the edge length of the Tetrahedron to be the same as the edge length of the 

Octahedron.) 

So 

 h = 
6

1  EL ≅ 0.40824829 EL 

 h = 
2

1  r  ≅  0.707106781  r 

 

The equation for the plane passing through the cylinder is given by 

 xp = 
2

1  z + (1/2) r 

with  0 ≤ z ≤ 
2

1  r  ( or 0 ≤ z ≤ 
6

1  EL ) 

 

Setting xc = xp, the intersection of the plane and the cylinder, we get 

 r cos(ϕ)  = 
2

1  z + (1/2) r    

or  

 z = 2  ( cos(ϕ)  – 1/2) r 
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In terms of EL, we have 

 

 z = 
3
2

 ( cos(ϕ)  – 1/2) EL  ≅  0.81649658 (cos(ϕ)  – 0.5) EL   

 

This equation relates the radial distance that the triangle moves given the angular amount 

that it rotates.  Note that for this equation, ϕ = 60° is the closed Octahedron position, ϕ = 

0° is the fully expanded VE position, V = – 60° is the second closed Octahedron position. 

 

We simple invert this equation if we want to know the angular amount the triangle face 

rotates given the radial distance z that it moves.   (Of course, EL > 0.) 

 cos(ϕ) = 
EL2

3
 z  + 1/2 ≅ (1.224744871 / EL) z + 0.5  

Recall that 0 ≤ z ≤ 
6

1  EL and that cos(ϕ) = cos(– ϕ) so that there are 2 possible 

angles (ϕ and – ϕ) for each z value. 

 

We now develop equations which will allow us to draw the curve which a vertex of the 

Jitterbug traces during its Jitterbug motion. 

  

From Figure #3,  

 tan(α) = h/d = h / [(1/2) r] = 
2

1  r  / [(1/2) r] = 2  

This implies that α = 54.73561032…°.  In terms of sines and cosines, we can write 

 sin(α) = 
3
2

 

 cos(α) = 
3

1  

 

Jitterbug Motion  Robert W. Gray 
Copyright Sept. 2002  rwgray@rwgrayprojects.com 

6



Also from Figure #3 we see that 

L sin(α) = h 

Or,  using z instead of  h 

 L = 
2
3

 z 

and 

 z = 
3
2

 L 

Recall the equation above 

xp = 
2

1  z + (1/2) r 

and that xp = xc.  Also note that 

 xc
2 + yc

2 = r2 

so that  

 xc = 2
c

2 y−r  

We then have 

 

2
c

2 yr − = 
2

1  z + (1/2) r 

2
c

2 yr − = 
2

1
3
2

 L + (1/2) r 

L = 3 ( 2
c

2 yr −  – (1/2) r ) 

Or  

L = 3  ( 2
c

2 yEL
3
1

−  – 
32

1  EL ) 

L = 2
c

2 y3EL − – 
2
1  EL 

Relabeling Z = L, Y = yc gives 

 Z = 22 Y3−EL  – 
2
1  EL 
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This equation allows us to plot the path that a vertex travels.  (Note that “Z”  is not the z-

axis used above.  This Z is in the plane defined by the vertex motion.) 

 

 
Figure #4 Jitterbug vertex path 

 

The ranges are (–1/2) EL ≤ Y ≤ (1/2) EL, and 0 ≤ Z ≤ (1/2) EL 

 

This curve is part of an ellipse. 

The general formula for an ellipse is 

 
( )

2

2
0

b
YY −

+ 
( )

2

2
0

a
ZZ −

 = 1 

where the center of the ellipse is (Y0, Z0) and a = semimajor  and b = semiminor axis. 

 

Starting with  

 Z = 22 Y3−EL  – 
2
1  EL 

we can write 

 Z + (1/2) EL =  22 Y3EL −  

 (Z + (1/2) EL)2 = EL 2 – 3Y 2 

 

3Y 2 + (Z + (1/2) EL)2   = EL 2  

2

2

EL1
Y

3

  + 2

2

EL

EL
2
1Z 






 +

 = 1 
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This tells us that: 

the center of the ellipse, in (Y, Z) coordinates, is at ( 0, – (1/2)EL), 

the semimajor axis is a = EL, 

the semiminor axes is b = 
3

1  EL. 

This complete ellipse is shown in the next Figure. 

 

 
Figure #5 Jitterbug Ellipse 

 

From a mathematical point of view, we can change the center of the ellipse without 

changing its properties.  So we change the ellipse equation from  

2

2

EL1
Y

3

  + 2

2

EL

EL
2
1Z 






 +

 = 1 

to 

2

2

EL
3
1
Y   + 2

2

EL
Z  = 1 

which moves the center of the ellipse to (Y, Z) = (0, 0). 
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The parametric form of the equation for the ellipse is given by 

 

Y = 
3

1 EL sin(θ) 

Z = EL cos(θ) 

 

The eccentricity of an ellipse is defined by the equation 

 e =  2

2

a
b1 −  

Using the above values for a and b: 

a = EL 

b = 
3

1  EL 

 we get  

 b2 / a2 = (1/3) / 1 = 1/3 

so that  

 e = 
3
11 −  = 

3
2

 ≅ 0.81649658 

 

The coordinates for the 2 focus points are (0, ae) and (0, –ae) in the (Y, Z) plane.  These 

evaluate to 

(0, 
3
2

EL) ≅ (0.0, 0.81649658 EL)  and   (0, – 
3
2

EL)  ≅ (0.0, – 0.81649658 EL)   

 

Of course, knowing that two intersecting cylinders produce an ellipse and knowing that 

the Jitterbug’s triangles move on the surface of cylinders tells us that the path of the 

vertices trace out part of an ellipse. 
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The Jitterbug Ellipses 
 

In Figure #6, the “Jitterbug portion” is the actual path that vertices will travel (direction 

of travel is not considered here.)  No vertex of the Jitterbug (when considering only the 

Octahedron to VE to Octahedron motion) traverses that portion of the ellipse curve which 

is within the “Square cross section of Octahedron” portion of the ellipse.  Later in this 

paper we will consider what happens if the vertices are allowed to move along this 

section of the ellipse. 

 
Figure #6 Ellipse and Octahedron edges 

 

Note that all four of the square’s edges in the ellipse of Figure #6 are Octahedron edges.  

Each pair of opposite edges of the Octahedron is part of an ellipse.  Therefore, there are 

two orthogonal ellipses in the same plane.   Figure #7 shows both ellipses defined by the 

motion of 4 Jitterbug vertices.   
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Figure #7  Two ellipse per plane 

 

Following only one vertex (one vertex of a rotating Jitterbug triangle) and with the 

Jitterbug in the Octahedron position, we label the initial vertex position “P1” .  This 

vertex will travel along the ellipse, passing through an Icosahedron position, to reach 

vertex position “P2”, the VE vertex position.  Then, with the Jitterbug triangle continuing 

to rotate in the same direction, the Jitterbug vertex passes through another Icosahedron 

vertex position to reach the Octahedron position “P3”.  (Further details relating the 

Jitterbug vertex position along the ellipse and various polyhedra is given below.)  Note 

that if the Jitterbug triangle were allowed to continue to rotate in the same direction then 

the vertex now at vertex position “P3” would not proceed to vertex position “P4”. 

Instead, is leaves this plane to follow another ellipse. 

 

The Octahedron has 12 edges forming 6 opposite edge pairs.  So there are a total of 6 

ellipses to define the complete Jitterbug motion.  These 6 ellipses are show in Figure #8 

and Figure #9. 
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Figure #8 Six ellipses and Octahedron 

 

 

 
Figure #9 Six ellipses and the VE 
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It is well known, and as mentioned above, that the Jitterbug vertices pass through an 

Icosahedron position during its Jitterbug motion.  (See Figure #11.) What is not well 

know is that the Jitterbug vertices also pass through a regular Dodecahedron position 

along the ellipses.  (See Figure #12.) 

 

 
 

 
Figure #10 Jitterbug in Icosahedron position 

 

Unlike the Jitterbug in the Icosahedron position, not all the vertices of the regular 

Dodecahedron are defined by one Jitterbug.  The Dodecahedron has 20 vertices.  The 

Jitterbug in the Dodecahedron position (as well as in the Icosahedron position) has only 

12 vertices.  To completely define all 20 vertices of the Dodecahedron in a symmetrical 

way requires 5 Jitterbugs.  This gives a total of 5 × 12 = 60 vertices.  When this is done, 

the pentagon faces of the Dodecahedron become pentagrams.  (It is possible to cover all 

the Dodecahedron vertices with 3 Jitterbugs but not in a symmetrical way.  That is, not in 
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a way as to have each of the Dodecahedron’s vertices covered by the same number of 

Jitterbug vertices and each of the Dodecahedron’s faces containing the same number of 

Jitterbug triangle edges.) 

 
Figure #11 Jitterbug in regular Dodecahedron position 

 
Figure #12 Symmetrical covering of Dodecahedron by 5 Jitterbugs 

 

(These 5 Jitterbugs are the basis for the 120 Polyhedron as explained in the paper 

“What’s in this Polyhedron?” which can be found at 

http://www.rwgrayprojects.com/Lynn/NCH/whatpoly.html) 

 

The Jitterbug in the VE position is shown in Figure #13. 

 

Jitterbug Motion  Robert W. Gray 
Copyright Sept. 2002  rwgray@rwgrayprojects.com 

15



 
Figure #13 Jitterbug in the VE position 

 

Because of the symmetry of the elliptical path, a Jitterbug vertex will pass through 2 

Icosahedra and 2 regular Dodecahedra positions.   These are shown in Figure #14.  The 

vertex positions labeled “D,C,T”  stand for the “Dodecahedron, Cube, Tetrahedron” 

position.  (It is well known that 5 Cubes and 10 Tetrahedra share the same vertices as a 

regular Dodecahedron.)  The positions labeled “O” are the Octahedron positions, those 

labeled “I” are the Icosahedron positions, and those labeled “VE” are the VE positions. 

 

 
Figure #14 Polyhedra positions of the Jitterbug motion 

 

Using an equation given above 

cos(ϕ) = 
EL2

3
 z  + 1/2 

we can calculate the angular amount ϕ that the Jitterbug triangle rotates from the VE 

position into the Icosahedron position. 
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Now,  

 DVFO = 
6

1 ELO  ≡ Distance from the center of Volume to the Face center of 

the Octahedron, 

and with τ = 
2

51+
we have 

 DVFI = 
32

1
τ 2  ELI   ≡ Distance from the center of Volume to the Face center 

of the Icosahedron. 

 

Since the triangle face of the Jitterbug does not change scale, we have ELO = ELI = EL.  

We set EL = 1 for convenience.  The distance z from the Octahedron face center to the 

Icosahedron face center is then 

 z = 
32

1
τ 2 −  

6
1   

This gives  

cos(ϕ) = 
2
3

 (
32

1
τ 2 −  

6
1  )  + 1/2 

cos(ϕ) =  
22

1
τ 2 

which implies that ϕ = acos( 
22

1
τ 2 ) ≅  22.23875609…°.  That is, starting in the VE 

position, the 8 triangles are rotated by the amount ϕ (clockwise or counterclockwise) to 

obtain the Icosahedron position.  The triangles are like gears in that if a triangle is rotated 

clockwise, then the 3 triangles attached to it must rotate counterclockwise. 

 

To calculate the angular rotation of the Jitterbug triangles for the regular Dodecahedron 

position, we first find the radial displacement of one of the Jitterbug’s triangles.   
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Figure #15 Three vertices of the Jitterbug and Dodecahedron 

 

Figure #15 shows 3 of the Jitterbug’s triangles coinciding with 3 of the Dodecahedron’s 

vertices.  It can be shown that these three vertices can be given the (x, y, z) coordinates 

 V1 = (0, − τ ,  τ 3 )  

V2 = (− τ 3, 0, τ)  

 V3 = (− τ , − τ 3, 0)  

where τ = 
2

51+
.   

Using these coordinates sets the Octahedron’s edge length.  The edge length of the 

Octahedron, calculated using the equation 

 τ n+1 = τ n  + τ n-1    

is 

 ELO = distance(V1, V2) = sqrt(τ 6 + τ 2 + (τ 3 − τ ) 2  ) 

 ELO = 2 τ 2 

 

Then, using τ 3 = τ 2 + τ  = τ  + 1 + τ =  2τ + 1, the center of the triangle face is at  

 FC = (− (τ + 1/3),  − (τ + 1/3),  (τ + 1/3) ) 

which is a distance  
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 DVFDT = 3 (τ + 1/3)  

from the center of volume. 

With 

DVFO = 
6

1 ELO   

and using  

 z = DVFDT – DVFO 

we get 

 z =  3 (τ + 1/3)  – 
6

1 ELO 

Using the equation  

cos(ϕ) = 
EL2

3
 z  + 1/2 

and with ELO = EL  we can calculate this to be 

cos(ϕ) = 
OEL2

3
  ( 3 (τ + 1/3)  – 

6
1 ELO)  + 1/2 

 cos(ϕ) =  ( )
2τ22

3/1τ3 +   

so that 

 ϕ = acos(  ( )
2τ22

3/1τ3 +  ) ≅  37.76124392…°. 

This is the angular amount that the Jitterbug triangle is rotated from the VE position to 

the Dodecahedron position. 
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Sub-Octahedron Zone 
 

As mentioned above, with physical, solid triangles, a Jitterbug’s vertex does not follow 

the complete path of an ellipse.   We now remove this constraint and let the vertices 

travel along the complete elliptical path.  This means that the triangles of the Jitterbug 

may now change their size as they continue to move radially and to rotate. 

 

 
Figure #16 The sub-Octahedron Zone of ellipse 

 

Beginning in the Octahedron position, the vertices are now to travel within the sub-

Octahedron zone of the 6 ellipses of the Jitterbug.  As shown in Figure #17, each of the 

Octahedron’s vertices split into 2 vertices and the diametrically opposite vertices, on the 

same ellipse, travel in the same direction.   

 

Note that the 3 vertices of a triangle have switched ellipses.  That is, in going from the 

original VE position to the original Octahedron position, a vertex of a triangle follows a 

particular ellipse.  For the triangle to continue to rotate and to remain on some elliptical 

path,  the vertex of the triangle switches to one of the other 3 ellipse which pass through 

the Octahedron vertex position.  The vertex, having switched, can now travel along the 

sub-Octahedron zone portion of a ellipse.   
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Figure #17 Jitterbug through sub-Octahedron zone 

 

 

 
Figure #18 Triangle vertices switch ellipses 
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Figure #18 shows one triangle of the Jitterbug triangles with its 3 vertices on ellipses 1, 3, 

and 6.  Once the triangle is in the Octahedron position, the vertices switch to follow along 

ellipses 5, 2, 4, respectively.  

 

(An alternative triangle motion for traversing the sub-Octahedron zone of the ellipses will 

be described in the next section.) 

 

In order to accomplish this motion, the Jitterbug triangles move radially, rotate and 

change scale.  This scale change is unlike the motion of the original Jitterbug motion 

describe previously. 

 

In one position it is seen that the Jitterbug forms another, smaller VE.  (See Figure #17.)  

Being another VE configuration, we can draw another pair of smaller ellipses in each of 

the 3 ellipse planes.  This construction of another sub-VE  within the original VE by 

following the ellipse paths can be continued to form sub-sub-VEs, etc. and therefore sub-

sub-Jitterbugs. 

 
Figure #19 First sub-Jitterbug ellipses 

 

As Figure #19 shows, the Octahedron vertex at P1 is moved to position P2 along the sub-

Octahedron zone of the original ellipse.  Again, this is not part of the normal Jitterbug  
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motion and is accomplished by a continuous change in scale.  From P2, the vertex may 

either continue along the original ellipse or it may smoothly switch to the smaller 

embedded ellipse and move to P3.  P3 is a sub-Octahedron vertex position.  The motion 

from P2 to P3 is a normal Jitterbug motion, i.e. without scaling.  

 

As before, we can map out the various polyhedra positions of the Jitterbug motion as its 

vertices traverses the sub-Octahedron zone.  This is shown in Figure #20 and Figure #21. 

 

 
Figure #20 One Dodecahedron, Icosahedron and VE position 

within sub-Octahedron Zone of ellipse 
 

 
Figure #21 Dodecahedron, Icosahedron and VE positions 

 

From the original, large VE, (maximum radial distance from the center of volume) a 

triangle will move radially inward and rotate to the original, large Octahedron position.  
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To then move to the sub-VE position, the triangle must reverse its radial direction (it 

moves radially outward) rotate (in either the same direction or opposite direction) and 

change scale (shrink in size.) 

 

The equations for the radial displacement and angular rotation of the triangles are now 

calculated. 

 

 
Figure #22 Sub-Octahedron Path 

 

Starting with the ellipse equation (from  above) 

2

2

EL
3
1
Y   + 2

2

EL
Z  = 1 

we first rotate the ellipse by 90 degrees 

2

2

EL
3
1
Z   + 2

2

EL
Y  = 1 

and solve for Z to get 

 Z = 
3

1 22 YEL −  

This is the equation defining the path which a vertex will travel in the YZ-plane of the 

original ellipse.  The range of the Y variable is (−1/2)EL ≤ Y ≤ (1/2) EL. 

 

When Y = (−1/2)EL, the triangle is a distance  
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 Z0 = (1/2) EL  

from the coordinate origin.  Then, in general, the triangle is displaced a distance of 

 Zd = 
3

1 22 YEL −  − (1/2)EL 

because the Z-axis is at an angle of  α = 54.73561032…° to the z-axis (which is the axis 

along which the triangle is displaced.)  Recall that 

 sin(α) = 
3
2

, and that  cos(α) = 
3

1  

so we get 

 zd = Zd sin(α) = 
3
2

 (
3

1 22 YEL −  − (1/2)EL ) 

 zd = 
3
2 22 YEL −  −  

6
1 EL   

This is the radial displacement of the triangle. 

Since  

 Y = DFEO tan(ϕ)  

and DFEO = 
32

1 EL  so that Y 2 = (1/12) EL2 tan2 (ϕ)   we can write this radial 

displacement in terms of the angular rotation of the triangle 

zd = 
3
2

)(tanEL)12/1(EL 222 ϕ−  −  
6

1 EL   

with  −60° ≤ ϕ ≤ 60°.   Note that ϕ = 0° is the small sub-VE position and that ϕ = ±60° 

are the original Octahedron positions. 

 

When the triangle is rotating from the original Octahedron position to the sub-VE 

position, the scale of the triangle is decreased.  When the triangle further rotates from the 

sub-VE position to the second Octahedron position, the scale of the triangle increases 

back to its original size. 
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Projecting the path onto the xy-plane, and knowing that the distance from the 

Octahedron’s face center to its mid-edge point DFEO is 

DFEO = 
32

1 EL 

we get 

xd = Zd cos(α)  + DFEO = 
3

1  (
3

1 22 YEL −  − (1/2)EL ) + DFEO 

 xd = (1/3) 22 YEL −  −  
32

1 EL  + 
32

1  EL 

Y 2 = (1/12) EL2 tan2 (ϕ)    

xd = (1/3) )(tanEL)12/1(EL 222 ϕ−     

The distance of the vertex to the zd axis is then  

 r = sqrt(xd
2

  + Y 2 ) 

Now, 

xd
2 =  (1/9)EL2 − (1/9)(1/12) EL2 tan2 (ϕ)    

so  

r2 =   (1/9)EL2 − (1/9)(1/12) EL2 tan2 (ϕ)  + (1/12) EL2 tan2 (ϕ)    

r2 =   (1/9)EL2 + (8/9)(1/12) EL2 tan2 (ϕ)   

r = (1/3) )(tan)3/2(1 2 ϕ+  EL  

 

 The scale factor which the triangle is reduced (as well as the associated polyhedra) as it 

rotates is given by 

 SF = r / DFEO = r / (
3

1  EL )  

SF = 
3

1 )(tan)3/2(1 2 ϕ+  

where the rotation angle – 60° ≤ ϕ ≤ 60°.   

 

For the sub-VE position, with ϕ = 0°, we get 
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SF = 
3

1  

An alternative calculation for the sub-VE position can be calculated by noting  that 

position P2 is at the semiminor axis position of the larger ellipse and is the semimajor 

axis position of the smaller ellipse.  Therefore, the Jitterbug in the sub-VE position is 

reduced by the  scale factor (SF)   

 SFVE =  small ellipse semimajor axis  /  large semimajor axis 

 = large ellipse semiminor axis  /  large semimajor axis  

 = 
3

1  EL / EL 

SFVE = 
3

1  ≅ 0.577350269 

 

The Scale Factor for the Dodecahedron position of the Jitterbug is now calculated. 

 

Recall that the angle of rotation for the Dodecahedron position is 

ϕ = acos(  ( )
2τ22

3/1τ3 +  ) ≅  37.76124392…°. 

so 

 cos(ϕ) = ( )
2τ22

3/1τ3 + = 
2τ22

1τ3 +  

It can be shown that  

 sin(ϕ) = 
2τ22
6τ9 +

 

then  

tan(ϕ) = sin(ϕ) / cos(ϕ) = 
13
69

+
+

τ
τ

 = 
5
3

 

Using this value in the Scale Factor equation, we get 
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SFD = 
3

1 )(tan)3/2(1 2 ϕ+  = 
3

1 )5/2(1+  

So the Dodecahedron is reduced by a scale factor of 

 SFD = 
15
7

 ≅ 0.683130051…. 

 

Now for the Icosahedron’s scale factor.   

 

We know that the rotation angle for the Icosahedron position is 

ϕ = acos( 
22

1
τ 2 ) ≅  22.23875609…°.   

so that 

 cos(ϕ) = 
22

1
τ 2  

Then it can be shown that 

 sin(ϕ) = 
22
τ8 4−

 

then 

 tan(ϕ) =  
2τ3
63τ

+

+−
 

This gives 

SFI = 
3

1 )(tan)3/2(1 2 ϕ+  = 
3

1
2τ3
6τ

+

+
 

So the Icosahedron is reduced by a scale factor of 

SFI =  
6τ9
6τ

+

+
 ≅ 0.658613584…. 
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Alternative Sub-Octahedron Zone Motion 
 

 

There is another way for the vertices of the original sized Jitterbug to traverse the sub-

Octahedron zone portion of the ellipse.  With this alternative method the triangles do not 

change scale and they continue move radially inward.  This can be accomplished by 

allowing the triangles to interpenetrate one another.  See Figure #23.   Note that the 

triangles’ vertices are still paired.  That is, the triangles are still joined together. 

 

As Figure #23 shows, the same sequence of polyhedra (Dodecahedron, Icosahedron, VE) 

occurs as in the previous case. 

 

When the vertices are in the VE position, the triangles all have their face centers at the 

coordinate origin (0, 0, 0). 

 

Along the  sub-Octahedron zone, the triangles rotate from 0 to 30 degrees from the 

original Octahedron to the sub-VE position and another 30 degrees from the sub-VE back 

to the original Octahedron position.  From Octahedron to sub-VE position, the triangles 

move radially inward a distance of   

DVFO = 
6

1  EL 

Note that these rotations are half that of the original Jitterbug motion (the non-sub-

Octahedron zone motions) but that the total radial displacement from the original 

Octahedron to sub-VE  position is the same as the total radial displacement from the 

original Octahedron to the original VE position. 
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Figure #23 Triangles are allowed to interpenetrate 
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We now develop equations for the vertex motion along the sub-Octahedron zone. 

 

 
Figure 24 Orientation of ellipse and axes 

 

Starting with the ellipse equation (in the YZ-plane) 

2

2

EL
3
1
Y   + 2

2

EL
Z  = 1 

we have 

 Z = 22 3YEL −  

Now, 

z = Z sin(α) 

and we know that sin(α) = 
3
2

, and that  cos(α) = 
3

1  so  

 z = 
3
2 22 3YEL −  

Since  

 Y = DFVO cos(ϕ)  

and DFEO = 
3

1 EL  so that Y 2 = (1/3) EL2  cos2 (ϕ)    

Jitterbug Motion  Robert W. Gray 
Copyright Sept. 2002  rwgray@rwgrayprojects.com 

31



 z = 
3
2

)(cos1 2 ϕ−   EL 

 

z = 
3
2

 sin(ϕ) EL 

This gives us the displacement of the triangle’s center of face along the z-axis with 

respect to the rotation of the triangle.  Note that the angle ϕ ranges from  

− 30° < ϕ < 30°  

with ϕ = 0  the sub-VE position with the triangle face center at (0,0,0). 

 

The displacement of the triangle from the Octahedron position (at ϕ = 30°) as it rotates to 

the sub-VE position (at ϕ = 0°) to the second Octahedron position (at ϕ = −30°)  is given 

by  

 zd =  
6

1 EL − 
3
2

 sin(ϕ) EL 

 

Since the angular rotation range is compressed by a half, the angular amount of rotation 

to the various polyhedra positions are given by: 

Icosahedron: 

ϕ = (1/2) acos( 
22

1
τ 2 ) ≅  11.11937805…°.   

 Dodecahedron: 

ϕ = (1/2) acos(  ( )
2τ22

3/1τ3 +  ) ≅  18.88062196…°. 

These angles are relative to the VE position at ϕ = 0°. 

 

The general Scale Factor equation for the polyhedra is given by: 

 SF = 
3

1 )2(tan)3/2(1 2 ϕ+  
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where the rotation angle – 30° ≤ ϕ ≤ 30°.   Note that the triangles do not change scale.  

The scale factors for the polyhedra are as before: 

 VE: 

SFVE = 
3

1  ≅ 0.577350269 

 Icosahedron: 

 SFI =  
6τ9
6τ

+

+
 ≅ 0.658613584…. 

 Dodecahedron: 

SFD = 
15
7

 ≅ 0.683130051…. 
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Additional Comments 
 

 

The Jitterbug ellipse is such that it passes through 6 vertices of the combined odd-even 

FCC lattices. 

 
Figure 25 Ellipse in odd-even FCC combined lattice 

 

In Figure #25, the red is the even (vertex centered) FCC lattice and the purple is the odd 

(Octahedron centered) FCC lattice. 

 

Two Jitterbugs can not share the same triangular face and have their positions (location 

of center of volume)  fixed as they go through the Jitterbug motion.  If two Jitterbugs are 

to share the same triangle face then as the joined  Jitterbugs jitterbug the positions of the 

Jitterbugs must move. 

 

As Fuller points out, when in the Octahedron position, it is possible to “twist” the 

Jitterbug  to make it collapse and lay flat.  It can then be folded into a Tetrahedron. 

 

There are many Jitterbugs, of various sizes, in the 120 Polyhedron. 
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Figure 26 Five Jitterbugs’ ellipse sets in the planes of 

15 Great Circles to define a 120 Polyhedron like structure 
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Summary 
 

 

The vertices of the Jitterbug triangles move on elliptical paths.    

There are 6 ellipses per Jitterbug.  These 6 ellipses define 3 planes, 2 ellipses per plane.  

The planes intersect each other at 90 degrees.  The 2 ellipses per plane intersect each 

other at  90 degrees. 

 

The equation for an ellipse is  

2

2

EL
3
1
Y   + 2

2

EL
Z  = 1  

The parametric form of the equation for the ellipse is given by 

Y = 
3

1 EL sin(θ) 

Z = EL cos(θ) 

with 0° < θ < 360°. 

 

The semimajor axis is a = EL.  (EL = the edge length of the Jitterbug.) 

The semiminor axes is b = 
3

1  EL. 

The eccentricity of the ellipse is e = 
3
2

 ≅ 0.81649658. 

The coordinates for the 2 focus points in the (Y, Z) plane are  

(0, 
3
2

EL) ≅ (0.0, 0.81649658 EL)  and 

(0, – 
3
2

EL)  ≅ (0.0, – 0.81649658 EL)   
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As the Jitterbug moves from an VE position to a Octahedron position, the vertices pass 

through first an Icosahedron position and then a regular Dodecahedron position. 

 

The angular amount that the Jitterbug triangle is rotated (in either direction) from the VE 

position to the Icosahedron position: 

ϕ = acos( 
22

1
τ 2 ) ≅  22.23875609…°.   

The angular amount that the Jitterbug triangle is rotated (in either direction) from the VE 

position to the Dodecahedron position: 

ϕ = acos(  ( )
2τ22

3/1τ3 +  ) ≅  37.76124392…°. 

As the vertices travel along the sub-Octahedron zone portion of the ellipse, the Jitterbug 

continuously changes scale.  The Scale Factor is given by the equation 

SF = 
3

1 )(tan)3/2(1 2 ϕ+  

where the rotation angle – 60° ≤ ϕ ≤ 60°.  The angle ϕ = 0 corresponds to the sub-VE 

position and the angles ϕ = ±60° correspond to the un-scaled, original Octahedron 

position. 

 

In the sub-VE position, the Jitterbug has changed scale by 

SFVE = 
3

1  ≅ 0.577350269 

In the sub-Icosahedron position, the Jitterbug has change scale by 

SFI =  
6τ9
6τ

+

+
 ≅ 0.658613584…. 

In the sub-Dodecahedron position, the Jitterbug has changed scale by the factor 

SFD = 
15
7

 ≅ 0.683130051…. 
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