	Inherent Qualities			Old Equation	New Equation	New Equation	New Equation		Prime	Relative
	Vertexes	Faces	Edges	V + F. = E + 2	*+ F = E	÷ 2 •	reduced to common factor		Numbers	Abundance ★+F=E
Tetrahedron	4	4	6	4 + 4 = 6 + 2	2 + 4 = 6	1 + 2 = 3	1 (1+2=3)		(1)	
Octahedron	6	8	12	6 + 8 = 12 + 2	4 + 8 =12	2 + 4 = 6	2 (1+2=3)		2	
Cube	8	12	18	8 +12 =18 + 2	6 +12 =18	3 + 6 = 9	3 (1+2=3)	- • 'ل ⊷'م	3	·••[1 + 2 = 3] + ②
Icosahedron	12	20	30	12+20 =30 + 2	10+20 =30	5 +10 =15	5 (1+2=3)		5	* .
Vect. Equilib.	12	20	30	12+20 =30 + 2	10+20=30	5 +10 =15	5 (1+2=3)		5 ,)

DEFINITIONS:

- ➤ Number of points (vertexes) other than those on poles = (V-2=x) = non-polar vertexes.
- Polarity Constant that modifies all systems under consideration, additive twoness.

 Zonality Constant (Zone of Tunability), multiplying twoness.

 V Number of vertexes.

- F Number of faces.
- E Number of edges.
- 5 Frequency Modular breakdown.
- @ Wave length.

Gibbs' Phase Rule: F = C + 2 - P

where: F = Degrees of Freedom, i.e. number of variables.

C = Number of Chemical Components.

P = Phases of the System.

2 = Constant.

The phase rule is an equation for determining the number of possible degrees of freedom (variables) that can be given arbitrary values in a system in equilibrium without upsetting the equilibrium. For example in a system consistiing of ice, water, and water vapor, there are three phases: vapor, liquid, and crystalline; and one component: water. Therefore: F = 0. The three phases of water can coexist in equilibrium at a fixed temperature and pressure only, there are no degrees of freedom.

	Single- bonded	Double- bonded	Triple- bonded
Equivalents			\Rightarrow
Phase	gas	liquid	crystalline
Bonds (vertexial)	single	double	triple
Connection	pin	hinge	fix
Inherent Qualities	vertex	edge	face

Fig. 1054.40