





Fig. 765.02 Stabilization of Three-Way-Grid Tensegrity Sphere: What happens with the snow mound is also exactly what happens in a three-way-grid tensegrity-geodesic spherical grid. In the balloon we get paths of these positively and negatively paired, kinetic molecules reacting from one another in a random set of directions. If they went into one path only, they would make a single circle which would push the balloon outwardly only at its equator making a disc and allowing the poles to collapse. If they made a two-way stack of parallel lesser circles as a cylinder, the cylinder would contract axially into a disc. A two-way grid would make only unstable squares and diamonds, which would elongate into a tubular snake. But once we have three or more sets of angularly independent circularly continued push-pull paths, they must inherently triangulate by push-pull stabilization of opposite angles. Triangulation means selfstabilizing, which creates omnidirectional symmetry, which makes an inherent threeway spherical symmetry grid, which is the geodesic structure.

Copyright © 1997 Estate of R. Buckminster Fuller